Privacy Policy

Who we are

Suggested text: Our website address is: https://live-deepc.pantheonsite.io.

Comments

Suggested text: When visitors leave comments on the site we collect the data shown in the comments form, and also the visitor’s IP address and browser user agent string to help spam detection.

An anonymized string created from your email address (also called a hash) may be provided to the Gravatar service to see if you are using it. The Gravatar service privacy policy is available here: https://automattic.com/privacy/. After approval of your comment, your profile picture is visible to the public in the context of your comment.

Media

Suggested text: If you upload images to the website, you should avoid uploading images with embedded location data (EXIF GPS) included. Visitors to the website can download and extract any location data from images on the website.

Cookies

Suggested text: If you leave a comment on our site you may opt-in to saving your name, email address and website in cookies. These are for your convenience so that you do not have to fill in your details again when you leave another comment. These cookies will last for one year.

If you visit our login page, we will set a temporary cookie to determine if your browser accepts cookies. This cookie contains no personal data and is discarded when you close your browser.

When you log in, we will also set up several cookies to save your login information and your screen display choices. Login cookies last for two days, and screen options cookies last for a year. If you select "Remember Me", your login will persist for two weeks. If you log out of your account, the login cookies will be removed.

If you edit or publish an article, an additional cookie will be saved in your browser. This cookie includes no personal data and simply indicates the post ID of the article you just edited. It expires after 1 day.

Embedded content from other websites

Suggested text: Articles on this site may include embedded content (e.g. videos, images, articles, etc.). Embedded content from other websites behaves in the exact same way as if the visitor has visited the other website.

These websites may collect data about you, use cookies, embed additional third-party tracking, and monitor your interaction with that embedded content, including tracking your interaction with the embedded content if you have an account and are logged in to that website.

Who we share your data with

Suggested text: If you request a password reset, your IP address will be included in the reset email.

How long we retain your data

Suggested text: If you leave a comment, the comment and its metadata are retained indefinitely. This is so we can recognize and approve any follow-up comments automatically instead of holding them in a moderation queue.

For users that register on our website (if any), we also store the personal information they provide in their user profile. All users can see, edit, or delete their personal information at any time (except they cannot change their username). Website administrators can also see and edit that information.

What rights you have over your data

Suggested text: If you have an account on this site, or have left comments, you can request to receive an exported file of the personal data we hold about you, including any data you have provided to us. You can also request that we erase any personal data we hold about you. This does not include any data we are obliged to keep for administrative, legal, or security purposes.

Where we send your data

Suggested text: Visitor comments may be checked through an automated spam detection service.

Molecular Foundry

Manual synthesis dramatically stifles innovation in drug discovery for many reasons, including (i) substantial time costs, (ii) high FTE costs, (iii) low synthesis success rates (20-34%), and (iv) a bias towards known reactions.

At DeepCure, we are fixing these problems to unlock the vast chemical space that AI drug design tools want to explore, but don’t, because manually synthesizing such compounds would not be practicable.

Automated Robotic Custom Synthesis

Manual synthesis dramatically stifles innovation in drug discovery for many reasons, including (i) substantial time costs, (ii) high FTE costs, (iii) low synthesis success rates (20-34%), and (iv) a bias towards known reactions. 

 

At DeepCure, we are fixing these problems to unlock the chemical space that AI drug design tools want to explore but can’t because it is not practicably available to most chemists.

Synthetic

Steps

Reaction

Types

Reaction

Development

Industry
Standard

1

4-10

manual

91
100+2

fully 

automated

made possible with automated analytical evaluation, purification, evaporation, etc.

made practicable with automated reaction development

made feasible with miniaturization & quick turnaround (2-10 days)

Notes: 1 4+ by Q2 2024. 2 Planned to reach by end of 2024.

MolGen™

Our molecular generation tool, MolGen™, designs novel, diverse compounds. Using state-of-the-art deep reinforcement learning (RL), MolGen™ constructs synthesizable compounds with features that capture the important molecular interactions for binding and selectivity, as well as deliver the desired ADME-tox profile of the target candidate profile (TCP).

Output of PocketExpander™

MolGen™ – building & iterating compounds

Novel, potent, & selective compound

Hypothesis Generation

Unlike other AI drug discovery companies, DeepCure does not use AI to simply match a library of compounds to a known pocket. Instead, we use our patent-pending AI methods to create causal, data-driven, human-interpretable hypotheses for binding to a given protein target. This enables us to go beyond known binding sites and ligands.

Structure-Based

Our hypothesis generation starts with a rigorous analysis of available structural information. Beyond the standard steps involved in structure preparation, our proprietary protocols also include methods for repairing structures (e.g. building missing loops) and generating more robust structures leveraging molecular dynamics (MD).

PocketExpander™

For most therapeutic targets, there is no data, limited data, or biased data. PocketExpander™ allows us to generate novel hypotheses by leveraging AI/ML and computational chemistry methods to map the protein surface and identify novel binding modes (shown as colored dots). The outputs serve as the blueprints for our molecular generation tool, i.e. MolGen™.

Causal Analysis

ML methods for drug discovery typically focus on correlations, which lead to biases for the types of compounds that have previously failed in discovery. In contrast, DeepCure uses a causal ML approach to find binding interactions without the biases for fruitless binding modes to design truly novel compounds.

Medicinal chemists engage in a conversation with explainable models

DeepCure’s platform is designed to be human-interpretable. By seeing how molecules are predicted to interact with the protein, scientists can make rational design changes to the molecule and explore interesting molecular interactions – ensuring we don’t blindly follow the ML algorithm or chemists’ intuition.